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ABSTRACT

Lidars are ideally placed to investigate the effects of
aerosol and cloud on the climate system due to their un-
precedented vertical and temporal resolution. Dozens
of techniques have been developed in recent decades to
retrieve the extinction and backscatter of atmospheric
particulates in a variety of conditions. These methods,
though often very successful, are fairly ad hoc in their
construction, utilising a wide variety of approximations
and assumptions that makes comparing the resulting data
products with independent measurements difficult and
their implementation in climate modelling virtually im-
possible.

As with its application to satellite retrievals, the meth-
ods of non-linear regression can improve this situation by
providing a mathematical framework in which the various
approximations, estimates of experimental error, and any
additional knowledge of the atmosphere can be clearly
defined and included in a mathematically ‘optimal’ re-
trieval method, providing rigorously derived error esti-
mates. In addition to making it easier for scientists out-
side of the lidar field to understand and utilise lidar data,
it also simplifies the process of moving beyond extinction
and backscatter coefficients and retrieving microphysical
properties of aerosols and cloud particles.

Such methods have been applied to a prototype Raman
lidar system. A technique to estimate the lidar’s overlap
function using an analytic model of the optical system
and a simple extinction profile has been developed. This
is used to calibrate the system such that a retrieval of the
profile extinction and backscatter coefficients can be per-
formed using the elastic and nitrogen Raman backscatter
signals.
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1. INTRODUCTION

The techniques of non-linear regression are applied
throughout the scientific community as a means to anal-
yse data [1, 2]. A model is produced to describe the sys-
tem under investigation in terms of a finite number of pa-
rameters, producing a simulated measurement. The set of

parameters giving a simulated measurement that is most
consistent with the actual measurement is then sought
through some iterative scheme (most often minimising
the chi-squared). Polynomial regression is a simple form
of this, whereby the system is assumed to be described by
a polynomial. Though not a perfect process, non-linear
regression provides a widely understood means to esti-
mate from indirect measurements a set of variables that
will be physically reasonable and consistent, unlike ad
hoc methods which can produce physically impossible
values if not carefully designed and assessed.

As the amount of light observed by a lidar in the elastic
channel is a function of both extinction and backscatter,
the analysis of lidar data is an underconstrained problem.
This is compounded when uncertainties in the calibration
of the instrument and state of the atmosphere are also
considered. Many means have been proposed to over-
come this difficulty [3, 4, 5], but these solve the lidar
equation in a deterministic manner and must resort to
various smoothing or averaging techniques to minimise
noise in the final product. By solving the problem in a sta-
tistical sense, non-linear regression fundamentally avoids
this issue.

This abstract briefly introduces two applications of non-
linear regression to lidar analysis. Firstly, the calibration
of a Raman channel of a lidar system in stable condi-
tions through the use of a relatively simple analytic for-
mulation of the overlap function is demonstrated. This
work is under review with Applied Optics titled ‘Estima-
tion of the lidar overlap function by non-linear regres-
sion.’ Then, the retrieval of the aerosol extinction and
backscatter from a Raman and the elastic channel of a
lidar is outlined.

2. OPTIMAL ESTIMATION

Optimal estimation is a non-linear regression scheme
which fits a set of parameters to a measurement, incorpo-
rating any prior information about the measurement sys-
tem. It solves for x the inverse problem,

y = F(x,b) + ε, (1)

where y describes a set of measurements with noise ε; the
state of the observing system and atmosphere are sum-



Figure 1. Retrieved CraA(r) for four different model
alignments. True profiles are plotted in colour.

marised by unknown parameters x and known parame-
ters b; and the forward model F translates this state into
a simulated measurement.

It is shown in [1] that the iteration,
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converges to the state with maximal probability, given the
measurement. The a priori state xa gives the expected
state of the system; S are covariance matrices describing
the uncertainty on the measurement or a priori; Γi is a
scale factor that is decreased after an iteration that im-
proves the fit between y and F(xi,b) and is increased
otherwise; and Ki = ∇xF(xi,b). The iteration is con-
sidered converged when the change in x is much less than
the predicted error.

3. ESTIMATION OF THE OVERLAP FUNCTION

A common model for the energy observed by a lidar from
a range r due to Raman scattering is, [6]
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where α(λ, r) is the extinction coefficient; the subscripts
m and a denote molecular and aerosol scattering; λL and

λX are the wavelengths of the laser beam and Raman
scattered radiation; E0 is the energy of the laser pulse;
NX(r) is the number density of the scattering species;
and Cra is a constant.

For estimation of the overlap function with optimal es-
timation, y consists of the profile Era(r) and x will de-
scribe the unknowns A(r), αa(r), and Cra. To further
constrain the problem, model forms of A(r) and αa are
introduced such that these profiles can be expressed in
terms of a few unknown parameters.

An analytic formulation for A(r) was proposed in [7].

Figure 2. (a) The retrieved calibration function with er-
rors over an arithmetic inversion of eqn. (3) using the
a priori extinction profile. (b) The attenuated backscat-
ter coefficient at 355 nm for the retrieved aerosol pro-
file (black), the elastic profile corrected with the retrieved
overlap function (blue), and as reported independently by
an EZ lidar at the same site (red).



This presented the overlap function as an integral over
the overlap of two circles — the assumed circular, con-
tinuous beam and the telescope’s FOV. It neglects the ef-
fects of any components after the telescope and any vari-
ations in the beam profile. Some rearrangement of the
form originally presented was made to improve accuracy
and stability of the integration.

It is then hypothesised that for stable PBLs, extinction
can be approximated as constant to some height z0 and
exponentially decaying above that over a scale height H .
This is a simplification of the profile presented in [8].
This profile can then be constrained by observations of
the atmosphere, such as measurement of the aerosol opti-
cal thickness, χ, with a sun photometer.

As shown in fig. 1, with simulated data the scheme suc-
cessfully retrieves the calibration function (the product
CraA(r)) for a variety of hypothetical systems. Data sim-
ulated for a variety of aerosol and laser beam profiles not
explicitly included in the models above could also be fit
with an error of < 5 % in most cases. Degeneracy in
the calibration function, whereby very similar functional
forms can be obtained for very different values of x and
b, produces these practically useful fits. However, the
retrieval may converge to a solution that is a poor fit to
the data, but is a much better fit than other solutions with
similar parameter values. As such, it is important that the
goodness of fit is carefully assessed.

Observations over two hours of a Spring morning with
χ = 0.13 were evaluated. Fig. 2(a) shows the retrieved
calibration function. For comparison, a simple arithmetic
inversion of eqn. (3) is also shown. The retrieved pro-
file is slightly smaller from 0.5 – 1 km than would be
expected from the data without retrieval as the retrieved
scale height is greater than initially guessed. The retrieval
returns larger errors than observed in the simulated data.
The reason for this is clear from the broad scatter of data
points above 1 km. The ability to fit a physically con-
sistent function regardless is one of optimal estimation’s
strengths.

The retrieved calibration function was used to approxi-
mately correct the instrument’s elastic channel to deter-
mine the attenuated backscatter coefficient,
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This is compared in fig. 2(b) to both the retrieved pro-
file and an independent measurement by a Leosphere
EZ lidar operated at the same site. We see that the re-
trieved αa is reasonable up to 1.5 km, but then underes-
timates the scale height. However, the fairly good corre-
spondence between the published β∗ and that determined
from RACHEL’s elastic channel (the RMS deviation be-
tween them reduces by a factor of two with the correc-
tion) gives confidence that despite the extinction profile,
the retrieved correction is useful. The difference in αa

may be due to a change in the lidar ratio between the PBL
and free troposphere.

4. RETRIEVAL OF EXTINCTION AND BACK-
SCATTER

Assuming that the retrieved calibration function does not
change significantly over several days to weeks, it can be
used to retrieve extinction and backscatter for other mea-
surements. This uses eqn. (3) and, for the elastic channel,
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Here, y contains both Eel(r) and Era(r) and x gives αa

and βa at a series of points (from which the profiles are
interpolated cubically).

Development of this retrieval method is still under way,

Figure 3. Retrievals of αa and βa from simulated data.
True profiles in black with retrieval from noiseless sim-
ulations in light blue and noisy simulation in dark blue.
Retrieval using an incorrect calibration plotted in orange
and green.



Figure 4. Aerosol backscatter on 29 Aug 2007 as derived by optimal estimation retrieval, at a resolution of 20 s and 17 m
(second down).

but some early investigations are be presented here. Fig. 3
show the retrieval of extinction (plots b and d) and
backscatter (plots a and c) for two different model atmo-
spheres simulated for 5 minutes of observation. The re-
trieved backscatter is consistent with the true profile at all
levels retrieved (errors not shown) and captures the fea-
tures of the profile with acceptable noise.

The extinction product is still under development. It is
clear that excessively large vertical correlations are as-
sumed for αa within Sa. This acts to smooth the profile.
The impact of the a priori upon the retrieval is under in-
vestigation.

The retrieved backscatter from observations on a Sum-
mer morning is presented in fig. 4 (10 s averages). Values
below 500 m are omitted as this plot neglected the over-
lap function. Aerosol variations through the mixed layer
are clearly visible with significantly better noise than for
evaluation at this level of averaging for analysis by meth-
ods [4, 5].
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