
Surface Runoff 

As for many other hydrological models (Singh and Frevert, 2002) surface routing 

is calculated according to the kinematic wave approximation of the shallow water 

equation (Lighthill and Whitam, 1955). Overland surface routing and channel 

flow are described by the continuity and momentum conservation equations: 
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where A is the flow cross-sectional area, Q is the flow rate of water discharge, q is 

the rate of lateral inflow per unit of length due to all the physical processes 

contributing to the hydrological cycle, t is time, x is the coordinate along the river 

path, α is the kinematic wave parameter, and m the kinematic wave exponent 

usually assumed = 1. The kinematic wave parameter α has the dimension of speed 

and it can be written as:  
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where S the longitudinal bed slope of the flow element, n is the Manning’s 

roughness coefficient depending on the land use type µ, R is the hydraulic radius 

that can be calculated as a linear function of the drained area D according to: 

𝐑 = 𝛃 + 𝛄𝐃𝛅 

 



where β, γ and δ are empirical constants to tune with during the calibration. The 

exponent δ is usually very close to 1. 

 

Evapotranspiration 

The potential evapotranspiration is computed as a function of the 

evapotranspiration in saturated soil conditions (Thornthwaite and Mather, 1957), 

according to the formula: 

 

𝐄𝐓𝐩 = 𝐤𝐜𝐄𝐓𝟎 

 

where kc is the crop factor that is a function of crop type. The reference 

evapotranspiration ET0 is approximated as a linear function of temperature and is 

calculated according to: 

 

𝐄𝐓𝟎 = 𝛂 + 𝛃𝐍𝐖𝐭𝐚 𝐡,𝐓 𝐓 

 

where N is daily maximum sunshine hours, Wta(h,T) is the compensation factor 

depending on the elevation h and temperature T. The coefficients α and β are to be 

estimated and this is carried out by fitting with the least squared method the 

Thornthwaite formula, namely: 
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where n(m) is the number of days of month m, N is the daily maximum sunshine 

hours for the month m, T(m) is the monthly average temperature, k1 and k2 are the 

thermal indexes.  



The compensation factor Wta(h,T) is a function of elevation and temperature and is 

calculated from: 

 

Wta (h,T ) = A(h)T
2 +B(h)T +C(h)�

 

 

The coefficient A(h), B(h) and C(h) have been estimated for different range of 

elevation according to the table reported by Dorembos et al. (1984).  

The actual evapotranspiration ETA is a fraction of the potential evapotranspiration 

ETp and it is calculated as a linear function of ground relative humidity GRH, more 

specifically ETA is zero in arid condition (GRH<0.2) and it is equal to ETp for 

GRH>0.7. For other values of ground humidity, the evapotranspiration term is 

calculated as a linear function of GRH: 

 

 
ETA =

GRH − 0.2
0.7− 02

ETP =
GRH − 0.2
0.7− 02

kc ⋅ET0
�

 

 

Additional details on the estimation of the evapotranspiration term can be found in 

Todini (1996) and Thornthwaite and Mather (1955). 

 

Melting 

Chym incorporates a temperature-index melt model based on the assumption that 

the melt rate is the sum of two terms. The first is linearly related to air 

temperature, which is regarded as an integrated index of the total energy available 

for melting. The second term is proportional to the incoming net solar radiation. 

Within this approach, melting is assumed to occur when the temperature T is 



above a threshold level TT (typically 1oC). It has been recognized (Pellicciotti et 

al., 2005) that this approach reproduce in a realistic way the observed melting rate 

in the Alpine region. The melting rate M (mm of equivalent precipitation per 

hour) is calculated as: 

 

M = TFT + SRF (1−α)G↓�
 

 

The factor of proportionality for the first term TF is the so called temperature 

factor (typical value around 0.05 mm/oC), the coefficient SRF is the shortwave 

radiation factor, and its typical value is around 0.0094 mm/h M2/(Watt oC), α is 

the fraction of solar radiation reflected by the surface, T is the ground temperature 

estimated by CHyM. In the previous formula G↓  is the incoming short wave solar 

radiation estimated from: 

 

G↓ =CsAtr sin(Ψ)�
 

 

where Cs is the solar constant (1368 Watt/m2) and Atr is the net sky trasmissivity 

that can be approximated by (Stull, 1999): 

 

Atr = 0.6+ 0.2sin(Ψ)[ ](1.0− 0.4σ H )(1.0− 0.7σM )(1.0− 0.4σ L )  

 

 where σ H , σM  and σ L  are the fractions of cloud cover respectively for high, 

medium and lower levels and their values are assumed to be a simple linear 

function of the time of year. The sinusoidal function of the solar elevation angle 



sin(Ψ)  depends on the latitude ϕ  and longitude λ  of the location and it is 

calculated as follow: 

sin(Ψ) = sin(ϕ )sin(δs )− cos(ϕ )cos(δs )cos(
2π tutc
td

−λ)
�

 

 

where tutc  is the time of the day in Universal Time Coordinate (also known as 

Greenwich Mean Time or GMT), td  is the length of the day and Ψ is the solar 

declination angle. For practical purposes, the second term of the melting 

contribution is considered only if the angle  Ψ  is in the interval 0 <Ψ ≥ π / 2  , 

namely during the daytime. The values of the temperature factor TF  and the 

shortwave radiation factor SRF are calibrated by “train and error”.  

 

Infiltration ad Percolation 

The infiltration process is modelled using a conceptual model similar to those 

proposed by several authors (e.g. Overton 1964; Singh and Yu 1990). Within this 

approach we describe the soil as composed of two reservoirs of water: the 

precipitation infiltrates in the upper soil layer until the saturation level is reached. 

The water of the upper layer also infiltrate (percolation) toward the lower soil 

layer. The total amount of water that infiltrates, I, is also saved at each time step in 

order to evaluate the return flow (see below).  

 

Return flow 

The return flow is parameterized assuming that the contribution to each 

elementary channel-cell is proportional to the total infiltration in the upstream 

basin during the last N months 



 

𝐑𝐟 = 𝐝𝐬
𝐔𝐩

𝐈 (𝐭, 𝐬)𝐝𝐭 

 

the infiltration term I described in the previous paragraph is integrated over the 

whole upstream basin of each cell and the time integral is carried out over the last 

N months, N being a value to be optimized during the calibration process. In 

practice, we assume that infltrated water contributes to the return flow of the same 

basin. The return flow is calculated for each cell as a linear function of the Rf  

term, and the linear coefficient is optimized during the calibration phase with 

typical values around 5x10-7 mm hour-1 Km-2. 

 


